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Figure 1 Point estimate for IDI index and the corresponding 0.95 point-wise (dashed lines) and

simultaneous (shaded regions) confidence intervals for the screened population of the TRACE study.
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Appendix

Appendix A Large sample properties of D̂1(·), D̂2(·) and ∆̂(·)

To justify the asymptotic properties of the proposed estimators, certain smooth regularity conditions are

needed for the distance function D(·, ·) and its corresponding predictor. Here, we consider the case that the

distance function is D(Y, Ŷ ) = |Y − Ŷ | for continuous and w
(1−Y )
0 wY

1 |Y − Ŷ | for binary responses, where

w0 and w1 are given positive numbers. Furthermore, when Y is continuous, we let Ŷ1(β′x) = g1(β′x) and

Ŷ2(θ′w) = g2(θ′w), and when Y is binary, let Ŷ1(β′x) = I{g1(β′x) > c} and Ŷ2(θ′w) = I{g2(θ′w) > c} for

some constant c. Similar arguments can be used to justify other cases.

Suppose that β0 and θ0 are interior points of their compact parameter spaces. We assume that the random

vector X and W are bounded above and thus supβ |Ŷ1(β′X)|+ supθ |Ŷ2(θ′W )| is bounded by a constant Y0.

Let Ω denote the set of z such that Jz is properly contained in the support of β′0X. First, we show that the

above estimators are uniformly consistent over Ω. To this end, with a slight abuse of notation, we let

D̃1(z, β) =
∑n

i=1 D{Yi, Ŷ1(β′Xi)}I{g1(β′Xi) ∈ Jz}∑n
i=1 I{g1(β′Xi) ∈ Jz} ,

D̃2(z, β, θ) =
∑n

i=1 D{Yi, Ŷ2(θ′Wi)}I{g1(β′Xi) ∈ Jz}∑n
i=1 I{g1(β′Xi) ∈ Jz} ,

D1(z, β) = E[D{Y, Ŷ1(β′X)}|g1(β′X) ∈ Jz] and D2(z, β, θ) = E[D{Y, Ŷ2(θ′W )}|g1(β′X) ∈ Jz]. Note that

D1(z) = D1(z, β0) and D2(z) = D2(z, β0, θ0). When Y is binary, it is not difficult to see that the processes

I{g1(β′Xi) ∈ Jz} = I{β′Xi ∈ g−1
1 (Jz)}, D{Yi, Ŷ1(β′Xi)} = w1YiI(β′Xi > c) + w0(1 − Yi)I(β′Xi < c) and

D{Yi, Ŷ2(θ′Wi)} = w1YiI(θ′Wi > c)+w0(1−Yi)I(θ′Wi < c) have finite pseudo dimensions. Therefore, by the

stability of the manageability of processes, D{Yi, Ŷ1(β′Xi)} I{g1(β′Xi) ∈ Jz} and D{Yi, Ŷ2(θ′Wi)}I{g1(β′Xi) ∈

Jz} are manageable. Furthermore, it is not difficult to see that D{Yi, Ŷ1(β′Xi)}I{g1(β′Xi) ∈ Jz} and

D{Yi, Ŷ2(θ′Wi)}I{g1(β′Xi) ∈ Jz} are bounded by an envelop function |Yi|+Y0 up to multiplying a universal

constant. It then follows from the uniform law of large numbers (Pollard, 1990, Ch. 8) that supz,β |D̃1(z, β)−

D1(z, β)| + supz,β,θ |D̃2(z, β, θ) − D2(z, β, θ)| converges to 0, in probability, where the sup is taken over Ω

and the compact parameter spaces of β and θ. When Y is continuous, D{Yi, Ŷ1(β′Xi)} = |Yi − g1(β′Xi)|

and D{Yi, Ŷ2(θ′Wi)} = |Yi− g(θ′Wi)| are Lipshitz continuous in β and θ, respectively. Therefore, the classes

of functions {D{y, Ŷ1(β′x)} | β} and {D{y, Ŷ2(θ′w)} | θ} are Donsker (van der Vaart and Wellner, 1996,
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Theorem 2.7.11). Following similar arguments, the uniform law of large number can be applied to show the

convergence of supz,β |D̃1(z, β)−D1(z, β)| and supz,β,θ |D̃2(z, β, θ)−D2(z, β, θ)|. This uniform convergence,

together with the convergence property of β̂ and θ̂, implies the uniform consistency of D̂1(z) = D̃1(z, β̂) and

D̂2(z) = D̃2(z, β̂, θ̂). The consistency of ∆̂(·) follows accordingly.

Next, we show that the processes D̂1(·), D̂2(·) and ∆̂(·) after standardization are asymptotically normal.

First, let T = (Y,U ′, V ′)′. It follows from Appendix 1 of Tian et. al. (2007),

n
1
2




β̂ − β0

θ̂ − θ0


 = n−

1
2

n∑

i=1




ψ1(Ti)

ψ2(Ti)


 + op(1),

where

ψ1(T ) = [E{ġ1(β′0X)XX ′}]−1X{Y − g1(β′0X)} and ψ2(T ) = [E{ġ2(θ′0W )WW ′}]−1W{Y − g2(θ′0W )}.

Now, let Ŵ1(z, β) = n
1
2 {D̃1(z, β)−D1(z, β)}, Ŵ2(z, β, θ) = n

1
2 {D̃2(z, β, θ)−D2(z, β, θ)},

ξ1(z, β, Ti) =
I{g1(β′Xi) ∈ Jz}

[
D{Yi, Ŷ1(β′Xi)} − D1(z, β)

]

pr{g1(β′X) ∈ Jz} ,

and

ξ2(z, β, θ, Ti) =
I{g1(β′Xi) ∈ Jz}

[
D{Yi, Ŷ2(θ′Wi)} − D2(z, β, θ)

]

pr{g1(β′X) ∈ Jz} .

Writing

Ŵ1(z, β)− n−
1
2

n∑

i=1

ξ1(z, β, Ti)

=− {D̃1(z, β)−D1(z, β)}n− 1
2

n∑

i=1

[
I{g1(β′Xi) ∈ Jz} − pr{g1(β′X) ∈ Jz}

pr{g1(β′X) ∈ Jz}
]

and using a Slutsky Theorem for random process, one can show that supz,β

∣∣Ŵ1(z, β)− n−
1
2

∑n
i=1 ξ1(z, β, Ti)

∣∣ →

0 in probability as n →∞ (van der Vaart and Wellner, 1996, Example 1.4.7). Similarly, we have supz,β,θ

∣∣Ŵ2(z, β, θ)

−n−
1
2

∑n
i=1 ξ2(z, β, θ, Ti)

∣∣ = op(1). Furthermore, using the similar argument used to show consistency of

D̂k(z), k = 1, 2, it can be shown that the classes of functions {ξ1(z, β, t) | z, β} and {ξ2(z, β, θ, t) | z, β, θ}

are Donsker for either continuous or binary Y . Therefore, the processes Ŵ1(z, β) and Ŵ2(z, β, θ) are tight.
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This, together with the above asymptotic expansion of n
1
2 (β̂ − β0) and n

1
2 (θ̂ − θ0), implies that

Ŵ1(z) = Ŵ1(z, β̂) + n
1
2

{
D1(z, β̂)−D1(z, β0)

}

= Ŵ1(z, β0) +

{
∂D1(z, β)

∂β

∣∣∣∣
β0

}′

n
1
2 (β̂ − β0) + op(1)

= n−
1
2

n∑

i=1

[
ξ1(z, β0, Ti) +

{
∂D1(z, β)

∂β

∣∣∣∣
β0

}′

ψ1(Ti)

]
+ op(1)

= n−
1
2

n∑

i=1

η1(z, β0, Ti) + op(1)

Ŵ2(z) = Ŵ2(z, β̂, θ̂) + n
1
2

{
D2(z, β̂, θ̂)−D2(z, β0, θ0)

}

= n−
1
2

n∑

i=1

[
ξ2(z, β0, θ0, Ti) +

{
D2(z, β, θ)

∂β

∣∣∣∣
(β0,θ0)

}′

ψ1(Ti) +

{
∂D2(z, β, θ)

∂θ

∣∣∣∣
(β0,θ0)

}′

ψ2(Ti)

]
+ op(1)

= n−
1
2

n∑

i=1

η2(z, β0, θ0, Ti) + op(1),

where op(1) is uniform in z. Firstly, one can show that the classes of functions {η1(z, β0, t) | z} and

{η2(z, β0, θ0, t) | z} are Donsker for either continuous or binary Y. Since pr{g1(β′0X) ∈ Jz}, D1(z, β0),

D2(z, β0, θ0), ∂D1(z, β)/∂β
∣∣
β0

, D2(z, β, θ)/∂β
∣∣
(β0,θ0)

and ∂D2(z, β, θ)/∂θ
∣∣
(β0,θ0)

are continuous in z, all these

functions are bounded by a constant for z ∈ Ω. Furthermore, pr{g1(β′0X) ∈ Jz} is bounded away from 0

for z ∈ Ω. Therefore, |η1(z, β0, Ti)| 6 C0{|Yi| + 1′|ψ1(Ti)|} and |η2(z, β0, θ0, Ti)| 6 C0{|Yi| + 1′|ψ2(Ti)|},

where 1 is a column vector with all elements being 1 and C0 is a generic constant. It then follows from a

functional central limit theorem (Pollard, 1990, Ch. 10) that the processes Ŵ1(·) and Ŵ2(·) converge weakly

to zero-mean Gaussian processes. The weak convergence of Ŵ(·) follows accordingly.

To approximate the distribution of the processes Ŵ1(·), Ŵ2(·) and Ŵ(·), we consider their respective

perturbed versions

W∗
1 (z) = n

1
2

{∑n
i=1[D{Yi, Ŷ1(β̂′Xi)} − D̂1(z)]I{g(β̂′Xi) ∈ Jz}Gi∑n

i=1 I{g(β̂′Xi) ∈ Jz}
+ D̃(z, θ̂∗)− D̂1(z)

}
,

W∗
2 (z) = n

1
2

{∑n
i=1[D{Yi, Ŷ2(θ̂′Wi)} − D̂2(z)]I{g(β̂′Xi) ∈ Jz}Gi∑n

i=1 I{g(β̂′Xi) ∈ Jz}
+ D̃(z, β̂∗, θ̂∗)− D̂2(z)

}
,

and W∗(z) = W∗
1 (z)−W∗

2 (z), where

β̂∗ = β̂ +

{
n∑

i=1

ġ1(β̂′Xi)XiX
′
i

}−1 n∑

i=1

Xi

{
Yi − g1(β̂′Xi)

}
Gi

θ̂∗ = θ̂ +

{
n∑

i=1

ġ2(θ̂′Wi)WiW
′
i

}−1 n∑

i=1

Wi

{
Yi − g2(θ̂′Wi)

}
Gi,

and {G1, ..., Gn} are independent standard normal random variables that are independent of the data. It
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follows from the same arguments as given above and similar arguments as in Appendix 4 of Cai et. al. (2005)

that the limiting distributions of W∗
1 (·), W∗

2 (·) and W∗(·), conditional on the data, are the same as those of

Ŵ1(·), Ŵ2(·) and Ŵ(·), respectively, on Ω. Since pr(Ω̂ ⊂ Ω) → 1, the confidence interval given in (2.10) of

the paper is asymptotically valid for any z ∈ Ω̂. Furthermore, noting the fact that supΩ̂ |W∗
l (z)/σW∗

l (z)| and

supΩ̂ |Ŵl(z)/σŴl(z)
| are asymptotically equivalent to supΩd1,d2

|W∗
l (z)/σW∗

l (z)| and supΩd1,d2
|Ŵl(z)/σŴl(z)

|,

respectively, where Ωd1,d2 ⊂ Ω is the limit of Ω̂, the asymptotical confidence band over the random region

Ω̂ given in (2.11) of the paper is valid as well. Similarly, one may justify the validity of the pointwise and

simultaneous confidence intervals given in (2.12) and (2.13) in the paper by noting that Ω̃d3 , the limit of Ω̃,

is a subset of Ω and σW(z) is uniformly bounded below by a positive constant for z ∈ Ω̃.

Appendix B Large sample properties of crossvalidated estimators

For each partition Ik, let β̂(−k) and θ̂(−k) be the estimated β0 and θ0 using data not in Ik via (2.2) and

(2.5), respectively,

D̂1k(z, β) =

∑
i∈Ik

D{Yi, Ŷ1(β′Xi)}I{g1(β′Xi) ∈ Jz}∑
i∈Ik

I{g1(β′Xi) ∈ Jz} ,

and

D̂2k(z, β, θ) =

∑
i∈Ik

D{Yi, Ŷ2(θ′Wi)}I{g1(β′Xi) ∈ Jz}∑
i∈Ik

I{g1(β′Xi) ∈ Jz} .

Since K is small relative to n, D̂1k(z) = D̂1k(z, β̂(−k)) is consistent. Then, it follows from the same argument

in Appendix A, n
1
2 {D̂1k(z)−D1(z)} = n

1
2 {D̂1k(z, β̂(−k))−D1(z, β0)} is asymptotically equivalent to

n−
1
2 K

n∑

i=1

I(τi = k)ξ1(z, β0, Ti) +

{
∂D1(z, β)

∂β

∣∣∣∣
β0

}′

n
1
2 (β̂(−k) − β0),

where {τi; i = 1, · · · , n} are n exchangeable discrete random variables uniformly distributed over {1, 2, · · · ,K},

independent of the data, and
∑n

i=1 I(τi = k) ≈ n/K, k = 1, · · · ,K. It follows from the same argument in

Appendix 3 of Tian et. al. (2007) that conditional on the observed {τi, i = 1, · · · , n}

β̂(−k) − β0 =
K

n(K − 1)

n∑

i=1

I(τi 6= k)ψ1(Ti) + op(n−1/2).

Then using the same argument in Appendix A, one can show that

W̃1(z) =
n

1
2

K

K∑

k=1

{
D̂1k(z)−D1(z)

}
=

n−
1
2

K

n∑

i=1

K∑

k=1

{
I(τi = k)Kξ1(z, β0, Ti) +

KI(τi 6= k)ψ1(Ti)
K − 1

}
+ op(1).
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Since
∑K

k=1 I(τi = k) = 1 and
∑K

k=1 I(τi 6= k) = K − 1, it is straightforward to show that W̃1(z) is

asymptotically equivalent to Ŵ1(z) and thus the distribution of W̃1(·) can be approximated by that of W∗
1 (·)

conditional on the partition indicators {τi, i = 1, · · · , n}. Similar arguments can be used to show that the

distributions of W̃2(·) and W̃(·) can be approximated by those of W∗
2 (·) and W∗(·), respectively.
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